

Souvik Roy

ECONOMIC RESEARCH UNIT, INDIAN STATISTICAL INSTITUTE, KOLKATA

OUTLINE

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES THANK YOU

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

Deferred

ACCEPTANCE (DA) Algorithm

Example - Deferred

ACCEPTANCE

Algorithm

PROPERTIES OF DAA:

SIDE OPTIMALITY

PROPERTIES OF DAA: STRATEGY-PROOFNESS

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

- EXAMPLE STABILITY
- DEFERRED
- ACCEPTANCE (DA) Algorithm
- Every Deep
- EXAMPLE DEFERRED ACCEPTANCE
- Algorithm
- PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA:
- STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

- A society with the set of agents \mathcal{I} .
- *Two sides* of the market: set of agents in \mathcal{B} and set of agents in \mathcal{S} where the sets \mathcal{B} , \mathcal{S} form a partition of \mathcal{I} .
- For simplicity, assume $|\mathcal{B}| = |\mathcal{S}| = n \ge 2$.
- For each $i \in \mathcal{B}$, $P^*(i)$ denotes a strict preference ordering over the elements in set S. Similarly for each $j \in S$, $P^*(j)$ denotes a strict preference ordering over the elements in set \mathcal{B} .
- A preference profile is denoted by $P^* = (P^*(i))_{i \in \mathcal{I}}$.
- Let \mathcal{P}_i^* be the domain of preferences for agent $i \in \mathcal{I}$ and $\mathcal{P}^* = \times_{i \in \mathcal{I}} \mathcal{P}_i^*$.
- A matching is a *bijection* $\mu : \mathcal{B} \cup \mathcal{S} \rightarrow \mathcal{B} \cup \mathcal{S}$ provided:

$$\Box \quad \forall i \in \mathcal{B} \cup \mathcal{S}, \mu \circ \mu(i) = i.$$

- $\Box \quad \forall i \in \mathcal{B} \text{ and } j \in \mathcal{S}, \mu(i) \in S, \mu(j) \in \mathcal{B}.$
- Denote $A(\mathcal{B}, \mathcal{S})$ as the set of all matchings.
- The triple $(\mathcal{B}, \mathcal{S}, \mathcal{P}^*)$ is called a Matching Problem without Externalities.

STABILITY AND CORE

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

- Example Stability Deferred
- ACCEPTANCE (DA) Algorithm
- Example Deferred Acceptance
- Algorithm
- PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA: STRATEGY-PROOFNESS
- Many-to-One Two-Sided Matching without

EXTERNALITIES

ONE-TO-ONE Two-Sided Matching with Externalities

Thank You

A matching $\mu \in A(\mathcal{B}, \mathcal{S})$ is (*pairwise*) *unstable* at a preference profile $P^* \in \mathcal{P}^*$ if there exists a pair (i, j) ($i \in \mathcal{B}$ and $j \in S$) and a matching $\mu' \in A(B, S)$ such that $\mu'(i)P^*(i)\mu(i)$ and $\mu'(j)P^*(j)\mu(j)$.

- Such a pair (i, j) is called a *blocking* pair.
- If a matching μ has no blocking pairs at a preference profile $P^* \in \mathcal{P}^*$, then it is (*pairwise*) *stable* at P^* .
- Denote $S(\mathcal{B}, \mathcal{S}, P^*)$ as the set of all stable matchings at $P^* \in \mathcal{P}$.
- A matching $\mu' \in A(\mathcal{B}, \mathcal{S})$ blocks another matching $\mu \in A(\mathcal{B}, \mathcal{S})$ at $P^* \in \mathcal{P}^*$ if there exists $B \subseteq \mathcal{B}$ and $S \subseteq \mathcal{S}$ with $|B| = |S| \neq 0$ such that $\mu'(B \cup S) = B \cup S$ and $\forall i \in B \cup S, \mu'(i)P^*(i)\mu(i)$.
- A matching μ is in the *core* at $P^* \in \mathcal{P}^*$ if it is not blocked by any other matching.
- The set $C(\mathcal{B}, \mathcal{S}, P^*)$ at $P^* \in \mathcal{P}^*$ denote the core of the matching problem $(\mathcal{B}, \mathcal{S}, \mathcal{P}^*)$.

OUTLINE

One-to-One Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

Deferred Acceptance (DA)

Algorithm

Example - Deferred

ACCEPTANCE Algorithm

PROPERTIES OF DAA:

SIDE OPTIMALITY

PROPERTIES OF DAA: Strategy-proofness

Many-to-One Two-Sided Matching without Externalities

ONE-TO-ONE Two-Sided Matching with Externalities

Let
$$\mathcal{B} = \{b_1, b_2, b_3\}$$
 and $\mathcal{S} = \{s_1, s_2, s_3\}$.

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

DEFERRED Acceptance (DA)

Algorithm

EXAMPLE - DEFERRED ACCEPTANCE

Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY

PROPERTIES OF DAA: Strategy-proofness

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

Let
$$\mathcal{B} = \{b_1, b_2, b_3\}$$
 and $\mathcal{S} = \{s_1, s_2, s_3\}$.

	$P^{*}(b_{1})$	$P^*(b_2)$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^{*}(s_{2})$	$P^*(s_3)$
-	<i>s</i> ₂	s_1	<i>s</i> ₁	b_1	b_3	b_1
	s_1	s ₃	<i>s</i> ₂	b_3	b_1	b_3
	s ₃	<i>s</i> ₂	s ₃	b_2	b_2	b_2

• Let $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

DEFERRED Acceptance (DA)

Algorithm

EXAMPLE - DEFERRED ACCEPTANCE

Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA:

STRATEGY-PROOFNESS

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

Let
$$\mathcal{B} = \{b_1, b_2, b_3\}$$
 and $\mathcal{S} = \{s_1, s_2, s_3\}$.

_	$P^{*}(b_{1})$	$P^*(b_2)$	$P^*(b_3)$	$P^{*}(s_{1})$	$P^{*}(s_{2})$	$P^{*}(s_{3})$
_	<i>s</i> ₂	<i>s</i> ₁	<i>s</i> ₁	b ₁	b_3	b_1
	\mathbf{s}_1	s ₃	<i>s</i> ₂	b_3	b_1	b_3
	<i>s</i> ₃	s ₂	S 3	<i>b</i> ₂	b_2	b_2

Let $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$ Consider the matching $\mu = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}.$

OUTLINE

One-to-One Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

- DEFERRED ACCEPTANCE (DA)
- Algorithm
- Example Deferred

ACCEPTANCE

ALGORITHM PROPERTIES OF DAA:

SIDE OPTIMALITY PROPERTIES OF DAA: STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

Let
$$\mathcal{B} = \{b_1, b_2, b_3\}$$
 and $\mathcal{S} = \{s_1, s_2, s_3\}$.

	$P^*(b_1)$	$P^*(b_2)$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^{*}(s_{2})$	$P^{*}(s_{3})$
_	<i>s</i> ₂	s_1	<i>s</i> ₁	b ₁	b_3	b_1
	\mathbf{s}_1	s ₃	<i>s</i> ₂	b_3	b_1	b_3
_	s_3	s ₂	S 3	b_2	b_2	b_2

Let $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$

Consider the matching $\mu = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}.$

The matching μ is not stable at P^* as (b_1, s_2) is a blocking pair.

OUTLINE

One-to-One Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

- DEFERRED ACCEPTANCE (DA)
- Algorithm
- Example Deferred

ACCEPTANCE Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY

PROPERTIES OF DAA: Strategy-proofness

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

Let
$$\mathcal{B} = \{b_1, b_2, b_3\}$$
 and $\mathcal{S} = \{s_1, s_2, s_3\}$.

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^{*}(s_{2})$	$P^{*}(s_{3})$
<i>s</i> ₂	s_1	<i>s</i> ₁	b ₁	b_3	b_1
\mathbf{s}_1	S 3	\mathbf{s}_2	b_3	b_1	b_3
<i>s</i> ₃	<i>s</i> ₂	s ₃	<i>b</i> ₂	b_2	b_2

Let $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$

- Consider the matching $\mu = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}.$
- The matching μ is not stable at P^* as (b_1, s_2) is a blocking pair.
- Now consider the matching $\bar{\mu} = \{(b_1, s_1), (b_2, s_3), (b_3, s_2)\}$

OUTLINE

One-to-One Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

- Deferred Acceptance (DA)
- ALGORITHM
- EXAMPLE DEFERRED

ACCEPTANCE Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA:

STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

Let
$$\mathcal{B} = \{b_1, b_2, b_3\}$$
 and $\mathcal{S} = \{s_1, s_2, s_3\}$.

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^{*}(s_{2})$	$P^*(s_3)$
<i>s</i> ₂	<i>s</i> ₁	<i>s</i> ₁	b ₁	b_3	b_1
\mathbf{s}_1	s ₃	\mathbf{s}_2	b_3	b_1	b_3
s ₃	<i>s</i> ₂	s ₃	b_2	b_2	b_2

• Let $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$

- Consider the matching $\mu = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}.$
- The matching μ is not stable at P^* as (b_1, s_2) is a blocking pair.
- Now consider the matching $\bar{\mu} = \{(b_1, s_1), (b_2, s_3), (b_3, s_2)\}$
- Notice that the matching $\bar{\mu}$ is stable at P^* .

DEFERRED ACCEPTANCE (DA) ALGORITHM

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

DEFERRED ACCEPTANCE (DA) ALGORITHM

EXAMPLE - DEFERRED ACCEPTANCE ALGORITHM PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA: STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

- Two versions either agents in \mathcal{B} propose and agent in \mathcal{S} accept or reject their proposals or viceversa.
- $\blacksquare \quad \mathcal{B} \text{ proposing version of (DA) Algorithm:}$
 - \Box First, every $i \in \mathcal{B}$ proposes to his top ranked member of \mathcal{S} .
 - □ Then, every $j \in S$ who has at least one proposal is (tentatively) matched to the top $i \in B$ who proposed to j and rejects the rest.
 - □ Then, every *i* who was rejected in the last round, proposes to the next best *j* ∈ S who have not rejected *i* in earlier rounds.
 - □ Then, every $j \in S$ who has at least one proposal is (tentatively) matched to the top $i \in B$ who proposed to j including any proposers tentatively matched to j from earlier rounds, (tentatively) keeps the top i amongst these proposals and rejects the rest.
 - □ The process is then repeated till each $j \in S$ has a proposal, at which point, the tentative proposal accepted by a $j \in S$ becomes permanent.
- Each $j \in S$ is allowed to keep only one proposal in every round, hence each j will not be matched to more than one i.
- The algorithm will terminate at finite time since in every round the subset of S to whom each i can propose does not increase and strictly decreases for atleast one $i \in \mathcal{B}$.

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

DEFERRED ACCEPTANCE (DA) Algorithm

Example - Deferred Acceptance Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY

PROPERTIES OF DAA: Strategy-proofness

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^{*}(s_{2})$	$P^{*}(s_{3})$
<i>s</i> ₂	<i>s</i> ₁	<i>s</i> ₁	b_1	b_3	b_1
s_1	s ₃	<i>s</i> ₂	<i>b</i> ₃	b_1	b_3
s ₃	<i>s</i> ₂	s ₃	b_2	b_2	b_2

Let
$$\mathcal{B} = \{b_1, b_2, b_3\}, \mathcal{S} = \{s_1, s_2, s_3\}$$
 and
 $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

 $\mathsf{EXAMPLE}\text{ - }\mathsf{STABILITY}$

DEFERRED ACCEPTANCE (DA) ALGORITHM

Example - Deferred Acceptance

Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA:

STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^{*}(s_{2})$	$P^{*}(s_{3})$
<i>s</i> ₂	s_1	s_1	b_1	b_3	b_1
s_1	s ₃	<i>s</i> ₂	<i>b</i> ₃	b_1	b_3
<i>s</i> ₃	<i>s</i> ₂	s ₃	<i>b</i> ₂	b_2	b_2

Let $\mathcal{B} = \{b_1, b_2, b_3\}, \mathcal{S} = \{s_1, s_2, s_3\}$ and $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$

We illustrate the *B*-proposing version of the algorithm.

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

 $\mathsf{EXAMPLE} \textbf{-} \mathsf{STABILITY}$

DEFERRED ACCEPTANCE (DA) ALGORITHM

Example - Deferred Acceptance Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA: STRATEGY-PROOFNESS MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^*(s_2)$	$P^{*}(s_{3})$
s ₂	s ₁	s ₁	b_1	b_3	b_1
s_1	s ₃	<i>s</i> ₂	b ₃	b_1	b_3
s ₃	<i>s</i> ₂	s ₃	b ₂	b_2	b_2

- Let $\mathcal{B} = \{b_1, b_2, b_3\}, \mathcal{S} = \{s_1, s_2, s_3\}$ and $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$
- We illustrate the *B*-proposing version of the algorithm.
 - In the first round, every $i \in \mathcal{B}$ will propose to $j \in \mathcal{S}$. So, $b_1 \rightarrow s_2$, $b_2 \rightarrow s_1$ and $b_3 \rightarrow s_1$.

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

DEFERRED ACCEPTANCE (DA) ALGORITHM

Example - Deferred Acceptance Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA: STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^{*}(s_{1})$	$P^*(s_2)$	$P^{*}(s_{3})$
s ₂	s ₁	s ₁	b_1	b_3	b_1
s_1	s ₃	<i>s</i> ₂	b ₃	b_1	b_3
s ₃	<i>s</i> ₂	s ₃	b ₂	b_2	b_2

- Let $\mathcal{B} = \{b_1, b_2, b_3\}, \mathcal{S} = \{s_1, s_2, s_3\}$ and $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$
- We illustrate the *B*-proposing version of the algorithm.
 - In the first round, every $i \in \mathcal{B}$ will propose to $j \in \mathcal{S}$. So, $b_1 \rightarrow s_2$, $b_2 \rightarrow s_1$ and $b_3 \rightarrow s_1$.
- Hence, s_1 has two proposals: $\{b_2, b_3\}$. Since $b_3P^*(s_1)b_2$, s_1 rejects b_2 and keeps b_3 .

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

DEFERRED ACCEPTANCE (DA) ALGORITHM

Example - Deferred Acceptance Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA: STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^*(s_1)$	$P^{*}(s_{2})$	$P^{*}(s_{3})$
s ₂	s_1	\mathbf{s}_1	b_1	b_3	b_1
s_1	S ₃	<i>s</i> ₂	b ₃	b_1	b_3
s ₃	<i>s</i> ₂	s ₃	<i>b</i> ₂	b_2	b_2

- Let $\mathcal{B} = \{b_1, b_2, b_3\}, \mathcal{S} = \{s_1, s_2, s_3\}$ and $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$
- We illustrate the *B*-proposing version of the algorithm.
- In the first round, every $i \in \mathcal{B}$ will propose to $j \in \mathcal{S}$. So, $b_1 \rightarrow s_2$, $b_2 \rightarrow s_1$ and $b_3 \rightarrow s_1$.
- Hence, s_1 has two proposals: $\{b_2, b_3\}$. Since $b_3P^*(s_1)b_2$, s_1 rejects b_2 and keeps b_3 .
- Now, b_2 is left to choose from s_2, s_3 . Since $s_2P^*(b_2)s_3, b_2$ now proposes to s_3 .

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

EXAMPLE - STABILITY

DEFERRED ACCEPTANCE (DA) ALGORITHM

Example - Deferred Acceptance Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY PROPERTIES OF DAA: STRATEGY-PROOFNESS

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^{*}(b_{3})$	$P^*(s_1)$	$P^*(s_2)$	$P^{*}(s_{3})$
s ₂	s_1	s ₁	b_1	b_3	b_1
s_1	S ₃	<i>s</i> ₂	b ₃	b_1	b_3
s ₃	<i>s</i> ₂	s ₃	b_2	b_2	b_2

- Let $\mathcal{B} = \{b_1, b_2, b_3\}, \mathcal{S} = \{s_1, s_2, s_3\}$ and $P^* = (P^*(b_1), P^*(b_2), P^*(b_3), P^*(s_1), P^*(s_2), P^*(s_3)).$
- We illustrate the *B*-proposing version of the algorithm.
- In the first round, every $i \in \mathcal{B}$ will propose to $j \in \mathcal{S}$. So, $b_1 \rightarrow s_2$, $b_2 \rightarrow s_1$ and $b_3 \rightarrow s_1$.
- Hence, s_1 has two proposals: $\{b_2, b_3\}$. Since $b_3P^*(s_1)b_2$, s_1 rejects b_2 and keeps b_3 .
- Now, b_2 is left to choose from s_2, s_3 . Since $s_2P^*(b_2)s_3, b_2$ now proposes to s_3 .
- Now, every woman has exactly one proposal and the algorithm stops with the matching μ^b given by $\mu^b = \left\{ \begin{pmatrix} h & c \end{pmatrix} \\ \begin{pmatrix} h & c \end{pmatrix} \\ \begin{pmatrix} h & c \end{pmatrix} \\ \end{pmatrix}$

PROPERTIES OF DAA: SIDE OPTIMALITY

OUTLINE

One-to-One
TWO-SIDED MATCHING
WITHOUT
EXTERNALITIES

BASIC FRAMEWORK

STABILITY AND CORE

 $\mathsf{EXAMPLE} \textbf{-} \mathsf{STABILITY}$

DEFERRED

ACCEPTANCE (DA) Algorithm

Example - Deferred

Acceptance Algorithm

PROPERTIES OF DAA: SIDE OPTIMALITY

PROPERTIES OF DAA: Strategy-proofness

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

Theorem 1. At every preference profile $P^* \in \mathcal{P}^*$, the DA algorithm terminates at a stable matching for that profile.

- The *B*-proposing and *S*-proposing algorithms may terminate at *different* stable matchings.
- Is one *better* than the other by some criterion?
- A matching μ is *B*-optimal (or *S*-optimal) stable matching at $P^* \in \mathcal{P}^*$ if μ is stable and for every other stable matching μ' we have $\mu(i)P^*(i)\mu'(i)$ or $\mu(i) = \mu'(i) (\mu(j)P^*(j)\mu'(j)$ or $\mu(j) = \mu'(j))$ for all $i \in \mathcal{B}$ ($j \in S$).

Theorem 2. The \mathcal{B} proposing (\mathcal{S} proposing) version of the DA algorithm terminates at the unique \mathcal{B} -optimal (\mathcal{S} -optimal) stable matching.

PROPERTIES OF DAA: STRATEGY-PROOFNESS

OUTLINE

- ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES
- BASIC FRAMEWORK
- STABILITY AND CORE
- $\mathsf{EXAMPLE}\text{ }\mathsf{STABILITY}$
- Deferred
- ACCEPTANCE (DA)
- Algorithm
- Example Deferred
- ACCEPTANCE
- Algorithm
- PROPERTIES OF DAA: SIDE OPTIMALITY
- PROPERTIES OF DAA: STRATEGY-PROOFNESS
- MANY-TO-ONE Two-Sided Matching without Externalities
- ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

- A matching function is a mapping $\mu : \mathcal{P}^* \to A(\mathcal{B}, \mathcal{S})$.
- A matching function μ is *manipulable* by player $i \in I$ at $P * \in \mathcal{P}^*$ via \overline{P}_i if $\mu(\overline{P}_i, P^*_{-i})P^*_i\mu(P^*_i, P*_{-i})$.
- A matching function is *strategy-proof* for every $i \in \mathcal{B}$ ($j \in S$) if it is not manipulable by any $i \in \mathcal{B}$ ($j \in S$).

Theorem 3. The \mathcal{B} -proposing (\mathcal{S} -proposing) version of the DA algorithm is strategy-proof for every $i \in \mathcal{B}$ ($j \in \mathcal{S}$).

- A matching function is *strategy-proof* if it is not manipulable by any $i \in \mathcal{I}$.
- There doesn't exist a matching that is both stable and strategy-proof.

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

Generalized Deffered

ACCEPTANCE

Algorithm (GDAA)

EXAMPLE -

GENERALIZED DA Algorithm

PROPERTIES OF GDAA:

SIDE OPTIMALITY LAW OF AGG.

DEMAND & RURAL HOSPITAL'S THEOREM

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

THANK YOU

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

EXAMPLE -GENERALIZED DA

Algorithm

PROPERTIES OF GDAA: SIDE OPTIMALITY

LAW OF AGG.

Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

THANK YOU

- In this section, we will consider *many-to-one* matching.
- We introduce the notion of *bilateral contracts* between agents in \mathcal{B} and \mathcal{S} .
- A *bilateral contract* x is an ordered pair (b(x), s(x)).
- Let *X* be the set of all contracts.
- For every $i \in \mathcal{B}$ $(j \in \mathcal{S})$, $X_i = \{x \in X | i = b(x)\}$ $(X_j = \{x \in X | j = s(x)\}).$
- Denote $X_{\mathcal{B}} = \bigcup_{i \in \mathcal{B}} X_i (X_{\mathcal{S}} = \bigcup_{j \in \mathcal{S}} X_j).$
- Each $i \in \mathcal{B}$ can sign only one contract whereas $j \in \mathcal{S}$ can hire more than one *s*.
- Each $i \in \mathcal{B}$ has a preference, denoted by $P^*(i)$, over the set $X_i \cup \{\emptyset\}$ where $X_j = \{x \in X | i \in \{b(x), s(x)\}\}, X_{\mathcal{S}} = \bigcup_{j \in S} X_j$ and

 \varnothing is the null contract.

CHOICE SETS

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

Example -

GENERALIZED DA

Algorithm

PROPERTIES OF GDAA: SIDE OPTIMALITY

LAW OF AGG. Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

Thank You

Suppose the set of offered contracts is given by $X' \subseteq X$. The choice set of $i \in \mathcal{B}$, $C_i(X')$, is given by $C_i(X') = \begin{cases} \emptyset \text{ if } \{x \in X' | i = b(x), xP^*(i)\emptyset\} = \emptyset \\ \{\max_{P_i^*} \{x \in X' | i = b(x)\} \text{ otherwise} \end{cases}$ The choice set of $j \in S$ given by $C_j(X') \subseteq \{x \in X' | j = s(x)\}$. Let $C_p(X') = \bigcup_{i=1}^{n} C_i(X')$ ($C_p(X') = \bigcup_{i=1}^{n} C_i(X')$)

Let $C_{\mathcal{B}}(X') = \bigcup_{i \in \mathcal{B}} C_i(X') (C_{\mathcal{S}}(X')) = \bigcup_{j \in \mathcal{S}} C_j(X')).$

Then the set of contracts *rejected* by $\mathcal{B}(\mathcal{S})$ in X' is given by $R_{\mathcal{B}}(X') = X' \setminus C_{\mathcal{B}}(X') \ (R_{\mathcal{S}}(X') = X' \setminus C_{\mathcal{S}}(X')).$

STABLE MATCHING WITH CONTRACTS

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

Example -Generalized DA Algorithm Properties of GDAA: Side Optimality

Law of Agg. Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

THANK YOU

A set of contracts $X' \subseteq X$ is a stable allocation if:

 $\Box \quad C_{\mathcal{B}}(X') = C_{\mathcal{S}}(X') = X'.$

□ there exists no $j \in S$ and set of contracts $X'' \neq C_j(X')$ such that $X'' = C_j(X' \cup X'') \subseteq C_{\mathcal{B}}(X' \cup X'')$.

Theorem 4. If $(X_{\mathcal{B}}, X_{\mathcal{S}}) \subseteq X^2$ is a solution to the system of equations

$$X_{\mathcal{B}} = X - R_{\mathcal{S}}(X_{\mathcal{S}})$$

$$X_{\mathcal{S}} = X - R_{\mathcal{B}}(X_{\mathcal{B}})$$
(1)

then $X_{\mathcal{B}} \cap X_{\mathcal{S}}$ is a stable set of contracts and $X_{\mathcal{B}} \cap X_{\mathcal{S}} = C_{\mathcal{B}}(X_{\mathcal{B}}) = C_{\mathcal{S}}(X_{\mathcal{S}})$. Conversely, for any stable collection of contracts X, there exists some pair $(X_{\mathcal{B}}, X_{\mathcal{S}})$ satisfying (1) such that $X' = X_{\mathcal{B}} \cap X_{\mathcal{S}}$.

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

Example -

GENERALIZED DA Algorithm

PROPERTIES OF GDAA:

SIDE OPTIMALITY

Law of Agg. Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

THANK YOU

- Though silent in the statement of the theorem, Theorem 4 relies on two conditions on the set of contracts - *Substitutes* condition and *Irrelevance of Rejected Contracts* condition.
- Contracts in *X* are *Substitutes* for $j \in S$ if for all subsets $X' \subseteq X'' \subseteq X$ we have $R_j(X') \subseteq R_j(X'')$.
- In other words, the substitutes condition requires R_j to be *monotone*.
- Contracts in *X* satisfy the *Irrelevance of Rejected Contracts* (IRC) for $j \in S$ if $\forall X' \subseteq X, \forall z \in X \setminus X'$, $z \notin C (X' + z) \rightarrow C (X') = C (X' + z)$

 $z \notin C_j(X' \cup z) \Rightarrow C_j(X') = C_{\mathcal{B}}(X' \cup z).$

Theorem 5. Suppose contracts satisfy the substitutes condition and IRC condition, then $S(\mathcal{B}, \mathcal{S}, P^*) \neq \emptyset$.

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

EXAMPLE -GENERALIZED DA ALGORITHM PROPERTIES OF GDAA:

SIDE OPTIMALITY LAW OF AGG.

DEMAND & RURAL HOSPITAL'S THEOREM

ONE-TO-ONE Two-Sided Matching with Externalities

THANK YOU

- The algorithm we present iteratedly solves the system of equations in (1).
- We present the *B*-proposing algorithm.
- Therefore start from by setting $(X_{\mathcal{B}}(0), X_{\mathcal{S}}(0)) = (X, \emptyset)$ (i.e, players in \mathcal{B} propose *X* and players in \mathcal{S} propose nothing).
- At each stage, players in B and S holds all the acceptable offers that have been made and rejects the rest.
- We check whether $(X_{\mathcal{B}}(0), X_{\mathcal{S}}(0))$ solves the following system of equations:

$$X_{\mathcal{B}}(0) = X - R_{\mathcal{S}}(X_{\mathcal{S}}(0))$$

$$X_{\mathcal{S}}(0) = X - R_{\mathcal{B}}(X_{\mathcal{B}}(0))$$
(2)

If not, we move to the next stage by setting $(X_{\mathcal{B}}(1), X_{\mathcal{S}}(1))$ as follows:

$$X_{\mathcal{B}}(1) = X - R_{\mathcal{S}}(X_{\mathcal{S}}(0))$$

$$X_{\mathcal{S}}(1) = X - R_{\mathcal{B}}(X_{\mathcal{B}}(0))$$
(3)

- We repeat this procedure, till a *fixed point* is reached.
- If the fixed point is reached in stage *t*, then by Theorem 4 we have a stable set of contracts given by $X_{\mathcal{B}}(t) \cap X_{\mathcal{S}}(t)$.

EXAMPLE - GENERALIZED DA ALGORITHM

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

OUTLINE

CHOICE SETS

Stable Matching with Contracts

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED

Deffered

ACCEPTANCE Algorithm (GDAA)

-

Example -Generalized DA Algorithm

PROPERTIES OF GDAA: SIDE OPTIMALITY

Law of Agg. Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

THANK YOU

$P^{*}(b_{1})$	$P^{*}(b_{2})$	$P^*(s_1)$	$P^{*}(s_{2})$
s_1	<i>s</i> ₁	${b_1}$	$\{b_1, b_2\}$
<i>s</i> ₂	<i>s</i> ₂	$\{b_2\}$	$\{b_1\}$
		Ø	$\{b_2\}$
			Ø

• Let $\mathcal{B} = \{b_1, b_2\}$ and $\mathcal{S} = \{s_1, s_2\}$.

EXAMPLE - GENERALIZED DA ALGORITHM

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

Generalized Deffered

Acceptance

Algorithm (GDAA)

EXAMPLE -GENERALIZED DA Algorithm

PROPERTIES OF GDAA: SIDE OPTIMALITY

Law of Agg. Demand & Rural Hospital's Theorem

ONE-TO-ONE Two-Sided Matching with Externalities

THANK YOU

$P^{*}(b_{1})$	$P^*(b_2)$	$P^{*}(s_{1})$	$P^{*}(s_{2})$
<i>s</i> ₁	<i>s</i> ₁	$\{b_1\}$	$\{b_1, b_2\}$
<i>s</i> ₂	<i>s</i> ₂	$\{b_2\}$	$\{b_1\}$
		Ø	$\{b_2\}$
			Ø

Let
$$\mathcal{B} = \{b_1, b_2\}$$
 and $\mathcal{S} = \{s_1, s_2\}$.
Let $P^* = (P^*(b_1), P^*(b_2), P^*(s_1), P^*(s_2))$.

EXAMPLE - GENERALIZED DA ALGORITHM

OUTLINE

- ONE-TO-ONE Two-Sided Matching without Externalities
- MANY-TO-ONE Two-Sided Matching without Externalities
- INTRODUCTION
- CHOICE SETS
- Stable Matching with Contracts
- SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS
- GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

Example -Generalized DA Algorithm

PROPERTIES OF GDAA: SIDE OPTIMALITY

Law of Agg. Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

THANK YOU

t	$X_{\mathcal{B}}(t)$	$R_{\mathcal{B}}(X_{\mathcal{B}}(t))$	$X_{\mathcal{S}}(t)$	$R_{\mathcal{S}}(X_{\mathcal{S}}(t))$
0	X	$\{(b_1, s_2), (b_2, s_2)\}$	Ø	Ø
1	X	$\{(b_1, s_2), (b_2, s_2)\}$	$\{(b_1, s_1), (b_2, s_1)\}$	$\{(b_2, s_1)\}$
2	$\{(b_1,s_1),(b_1,s_2),(b_2,s_2)\}$	$\{(b_1, s_2)\}$	$\{(b_1,s_1),(b_2,s_1),(b_2,s_2)\}$	$\{(b_2, s_1)\}$
3	$\{(b_1,s_1),(b_1,s_2),(b_2,s_2)\}$	$\{(b_1, s_2)\}$	$\{(b_1,s_1),(b_2,s_1),(b_2,s_2)\}$	$\{(b_2, s_1)\}$

- Let $\mathcal{B} = \{b_1, b_2\}$ and $\mathcal{S} = \{s_1, s_2\}$.
- Let $P^* = (P^*(b_1), P^*(b_2), P^*(s_1), P^*(s_2)).$
- The algorithm is initialized with $X_{\mathcal{B}}(0) = X$ and $X_{\mathcal{S}}(0) = \emptyset$.
- For t = 1, we start with $X_{\mathcal{B}}(1) = X$ (complement of $R_{\mathcal{S}}(X_{\mathcal{S}}(0))$) and $X_{\mathcal{S}}(1) = \{(b_1, s_1), (b_2, s_1)\}$ (complement of $R_{\mathcal{B}}(X_{\mathcal{B}}(0))$). Thus $R_{\mathcal{B}}(X_{\mathcal{B}}(1)) = \{(b_1, s_2), (b_2, s_2)\}$ and $R_{\mathcal{S}}(X_{\mathcal{S}}(1)) = \{(b_2, s_1)\}$.
- For t = 2, we compute
 - $X_{\mathcal{B}}(2) = X R_{\mathcal{S}}(X_{\mathcal{S}}(1)) = \{(b_1, s_1), (b_1, s_2), (b_2, s_2)\} \text{ and } X_{\mathcal{S}}(2) = X R_{\mathcal{B}}(X_{\mathcal{B}}(1)) = \{(b_1, s_1), (b_2, s_1), (b_2, s_2)\}.$ Thus $R_{\mathcal{B}}(X_{\mathcal{B}}(2)) = \{(b_1, s_2)\} \text{ and } R_{\mathcal{S}}(X_{\mathcal{S}}(2)) = \{(b_2, s_1)\}.$
- Repeating this procedure, we observe that $X_{\mathcal{B}}(3) = X_{\mathcal{B}}(2)$ and the process has reached a fixed point.
- Thus the algorithm terminates at round 3 and we obtain a stable set of contracts given by $X_{\mathcal{B}}(3) \cap X_{\mathcal{S}}(3)$.

PROPERTIES OF GDAA: SIDE OPTIMALITY

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

Example -Generalized DA Algorithm

PROPERTIES OF GDAA: SIDE OPTIMALITY

Law of Agg. Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

THANK YOU

- Denote the fixed points obtained from \mathcal{B} -proposing algorithm (\mathcal{S} -proposing algorithm) as $(\bar{X}_{\mathcal{B}}, \bar{X}_{\mathcal{S}})((\underline{X}_{\mathcal{B}}, \underline{X}_{\mathcal{S}}))$.
- The following theorem says that the side-optimality property that we observed in the case of one-to-one matching holds in the case of many-to-one matching as well.

Theorem 6. Suppose contracts are substitutes for $j \in S$. Then the stable set of contracts $\overline{X}_{\mathcal{B}} \cap \overline{X}_{\mathcal{S}}$ ($\underline{X}_{\mathcal{B}} \cap \underline{X}_{\mathcal{S}}$) is the unanimously most preferred stable set for every $i \in \mathcal{B}$ ($j \in S$) and the least preferred stable set for every $j \in S$ ($i \in B$).

LAW OF AGG. DEMAND & RURAL HOSPITAL'S THEOREM

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE Two-Sided Matching without Externalities

INTRODUCTION

CHOICE SETS

STABLE MATCHING WITH CONTRACTS

SUBSTITUTES AND IRRELEVANCE OF REJECTED CONTRACTS

GENERALIZED DEFFERED ACCEPTANCE ALGORITHM (GDAA)

EXAMPLE -GENERALIZED DA ALGORITHM PROPERTIES OF GDAA: SIDE OPTIMALITY

Law of Agg. Demand & Rural Hospital's Theorem

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

```
THANK YOU
```

The preferences of $j \in S$ satisfy the *law of aggregate demand* (LAD) if for all $X' \subseteq X''$, $|C_j(X')| \le |C_j(X'')|$.

Theorem 7. *If the preferences of* $j \in S$ *satisfy the substitutes condition then they satisfy the law of aggregate demand.*

The following *rural hospital's* (RH) theorem also holds.

Theorem 8. If the preferences of $j \in S$ satisfy the substitutes condition and the law of aggregate demand then for every stable allocation (X_B, X_S) and every $i \in B$ and $j \in S$, $|C_B(X_B)| = |C_B(\bar{X}_B)|$ and $|C_S(X_S)| = |C_S(\bar{X}_S)|$. Here (\bar{X}_B, \bar{X}_S) refers to the fixed point obtained from the B-proposing algorithm.

If the preferences of $j \in S$ doesn't satisfy the law of aggregate demand then the above theorem doesn't hold.

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE -Non-existence of φ -Stability

No Matched Couple Veto Property (NMCVP)

PARETO OPTIMALITY VS φ -STABILITY

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -

Non-existence of Core

Thank You

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

20 / 30

ESTIMATION FUNCTIONS

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(Non) Existence of φ -Stability

Example - Non-existence of φ -Stability

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -Non-existence of Core We incorporate *externalities* into this matching framework. Each agent $i \in \mathcal{T}$ has a strict proference ordering P(i) over t

- Each agent $i \in \mathcal{I}$ has a strict preference ordering P(i) over the set $A(\mathcal{B}, \mathcal{S})$.
- The set of matchings involving $i \in \mathcal{B}$ and $j \in \mathcal{S}$ is given by $A(i,j) = \{\mu \in A(\mathcal{B}, \mathcal{S}) | (i,j) \in \mu\}.$
- Let \mathcal{P}_i denote the domain of preferences for player *i* and $\mathcal{P} = \times_{i \in \mathcal{I}} \mathcal{P}_i$.
- The triplet $(\mathcal{B}, \mathcal{S}, \mathcal{P})$ is called Matching Problem with Externalities.
- Stability of matchings in this setting crucially depends on how agents perceive others to react to their deviation.
- This idea is captured by the notion of estimation function of agents.
- Formally, an *estimation function* of agent $i \in \mathcal{B}$ is defined as a function $\varphi_i : S \to 2^{A(i,j)}$.
 - The set of *estimations* is given by $\varphi = \{\varphi_i | i \in \mathcal{I}\}.$

φ -Stability

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

φ -Stability

(Non) Existence of φ -Stability

Example - Non-existence of φ -Stability

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

PARETO OPTIMALITY VS φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

Example -

NON-EXISTENCE OF CORE

Thank You

Given φ , a matching μ is φ -admissible if for any pair $(i, j) \in \mu$, $\mu \in \varphi_i(j) \cap \varphi_j(i)$.

Given φ , a matching μ is blocked by a pair $(i, j) \notin \mu$ at $P \in \mathcal{P}$ if for all $\mu' \in \varphi_i(j)$ and for all $\mu'' \in \varphi_j(i)$, $\mu' P(i)\mu$ and $\mu'' P(j)\mu$.

- A matching μ is φ -stable at $P \in \mathcal{P}$ if it is φ -admissible and has no blocking pair at P.
- The set $S_{\varphi}(\mathcal{B}, \mathcal{S}, P)$ at $P \in \mathcal{P}$ denotes the set of all φ -stable matchings.

(Non) Existence of φ -Stability

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

PARETO OPTIMALITY VS φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -Non-existence of Core

Thank You

In general, we cannot guarantee the existence of φ -stable matchings.

Theorem 9. For any $n \ge 3$, if either $\varphi_i(j) \ne A(i, j)$ or $\varphi_j(i) \ne A(i, j)$ for some $i \in \mathcal{B}$ and for some $j \in \mathcal{S}$, then there exists a preference profile $P \in \mathcal{P}$ such that $S_{\varphi}(\mathcal{B}, \mathcal{S}, P)) = \emptyset$.

The set of estimations φ is *universal* if $\forall i \in \mathcal{B}$, $\varphi_i(j) = A(i, j)$ and $\forall j \in \mathcal{S}$, $\varphi_j(i) = A(i, j)$.

Theorem 10. If the estimations φ is universal then for every $P \in \mathcal{P}$, $S_{\varphi}(\mathcal{B}, \mathcal{S}, P) \neq \emptyset$.

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

, Example -

NON-EXISTENCE OF CORE

Thank You

I	$P(b_1)$	$P(b_2)$	$P(b_3)$	$P(s_1)$	$P(s_2)$	$P(s_3)$
	μ_6	μ_2	μ_1	μ_2	μ_3	μ_4
	μ_3	μ_5	μ_4	μ_1	μ_4	μ_1
	μ_2	μ_6	μ_2	μ_4	μ_2	μ_6
	μ_1	μ_4	μ_6	μ_6	μ_5	μ_2
	μ_5	μ_1	μ_3	μ_5	μ_6	μ_5
	μ_4	μ_3	μ_5	μ_3	μ_1	μ_3

Let $B = \{b_1, b_2, b_3\}$ and $S = \{s_1, s_2, s_3\}$.

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE -Non-existence of φ -Stability

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -

Non-existence of Core

$P(b_1)$	$P(b_2)$	$P(b_3)$	$P(s_1)$	$P(s_2)$	$P(s_3)$
μ_6	μ_2	μ_1	μ_2	μ_3	μ_4
μ_3	μ_5	μ_4	μ_1	μ_4	μ_1
μ_2	μ_6	μ_2	μ_4	μ_2	μ_6
μ_1	μ_4	μ_6	μ_6	μ_5	μ_2
μ_5	μ_1	μ_3	μ_5	μ_6	μ_5
μ_4	μ_3	μ_5	μ_3	μ_1	μ_3

Let $B = \{b_1, b_2, b_3\}$ and $S = \{s_1, s_2, s_3\}$. $A(\mathcal{B}, \mathcal{S}) = \{\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6\}$ where $\mu_1 = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}, \mu_2 = \{(b_1, s_1), (b_2, s_3), (b_3, s_2)\},\$ $\mu_3 = \{(b_1, s_2), (b_2, s_3), (b_3, s_1)\}, \mu_4 = \{(b_1, s_2), (b_2, s_1), (b_3, s_3)\},\$ $\mu_5 = \{(b_1, s_3), (b_2, s_2), (b_3, s_1)\}, \mu_6 = \{(b_1, s_3), (b_2, s_1), (b_3, s_2)\}.$

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE -Non-existence of φ -Stability

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

Example -Non-existence of

Core

$P(b_1)$	$P(b_2)$	$P(b_3)$	$P(s_1)$	$P(s_2)$	$P(s_3)$
μ_6	μ_2	μ_1	μ_2	μ_3	μ_4
μ_3	μ_5	μ_4	μ_1	μ_4	μ_1
μ_2	μ_6	μ_2	μ_4	μ_2	μ_6
μ_1	μ_4	μ_6	μ_6	μ_5	μ_2
μ_5	μ_1	μ_3	μ_5	μ_6	μ_5
μ_4	μ_3	μ_5	μ_3	μ_1	μ_3

Let $B = \{b_1, b_2, b_3\}$ and $S = \{s_1, s_2, s_3\}$. $A(\mathcal{B}, \mathcal{S}) = \{\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6\}$ where $\mu_1 = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}, \mu_2 = \{(b_1, s_1), (b_2, s_3), (b_3, s_2)\},\$ $\mu_3 = \{(b_1, s_2), (b_2, s_3), (b_3, s_1)\}, \mu_4 = \{(b_1, s_2), (b_2, s_1), (b_3, s_3)\},\$ $\mu_5 = \{(b_1, s_3), (b_2, s_2), (b_3, s_1)\}, \mu_6 = \{(b_1, s_3), (b_2, s_1), (b_3, s_2)\}.$ Let $P = (P(b_1), P(b_2), P(b_3), P(s_1), P(s_2), P(s_3)).$

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

Example -Non-existence of

CORE

Thank You

$P(b_1)$	$P(b_2)$	$P(b_3)$	$P(s_1)$	$P(s_2)$	$P(s_3)$
μ_6	μ_2	μ_1	μ_2	μ_3	μ_4
μ_3	μ_5	μ_4	μ_1	μ_4	μ_1
μ_2	μ_6	μ_2	μ_4	μ_2	μ_6
μ_1	μ_4	μ_6	μ_6	μ_5	μ_2
μ_5	μ_1	μ_3	μ_5	μ_6	μ_5
μ_4	μ_3	μ_5	μ_3	μ_1	μ_3

Let $B = \{b_1, b_2, b_3\}$ and $S = \{s_1, s_2, s_3\}$. $A(\mathcal{B}, \mathcal{S}) = \{\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6\}$ where $\mu_1 = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}, \mu_2 = \{(b_1, s_1), (b_2, s_3), (b_3, s_2)\}, \mu_3 = \{(b_1, s_2), (b_2, s_3), (b_3, s_1)\}, \mu_4 = \{(b_1, s_2), (b_2, s_1), (b_3, s_3)\}, \mu_5 = \{(b_1, s_3), (b_2, s_2), (b_3, s_1)\}, \mu_6 = \{(b_1, s_3), (b_2, s_1), (b_3, s_2)\}.$ Let $P = (P(b_1), P(b_2), P(b_3), P(s_1), P(s_2), P(s_3)).$

Suppose $\varphi_{b_1}(s_2) = \{\mu_3\}.$

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

Example -Non-existence of Core

 $\overline{P}(s_3)$ $\overline{P}(s_1)$ $P(b_3)$ $P(s_2)$ $P(b_1)$ $P(b_2)$ μ_6 μ_2 μ_1 μ_2 μ_3 μ_4 μ_3 μ_5 μ_1 μ_4 μ_4 μ_1 μ_2 μ_6 μ_2 μ_4 μ_2 μ_6 μ_1 μ_4 μ_6 μ_6 μ_5 μ_2 μ_5 μ_1 μ_3 μ_5 μ_6 μ_5 μ_4 μ_3 μ_5 μ_3 μ_1 μ_3

Let $B = \{b_1, b_2, b_3\}$ and $S = \{s_1, s_2, s_3\}$. $A(\mathcal{B}, \mathcal{S}) = \{\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6\}$ where $\mu_1 = \{(b_1, s_1), (b_2, s_2), (b_3, s_3)\}, \mu_2 = \{(b_1, s_1), (b_2, s_3), (b_3, s_2)\}, \mu_3 = \{(b_1, s_2), (b_2, s_3), (b_3, s_1)\}, \mu_4 = \{(b_1, s_2), (b_2, s_1), (b_3, s_3)\}, \mu_5 = \{(b_1, s_3), (b_2, s_2), (b_3, s_1)\}, \mu_6 = \{(b_1, s_3), (b_2, s_1), (b_3, s_2)\}.$ Let $P = (P(b_1), P(b_2), P(b_3), P(s_1), P(s_2), P(s_3)).$

- Suppose $\varphi_{b_1}(s_2) = \{\mu_3\}.$
- Observe that μ_2 , μ_3 , μ_5 and μ_6 are blocked by (b_3, s_3) .

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

PARETO OPTIMALITY VS φ -STABILITY

Example - Pareto Optimality

CORE AND φ -STABILITY

Example -Non-existence of Core

 $\overline{P}(s_3)$ $\overline{P}(s_1)$ $P(b_3)$ $P(s_2)$ $P(b_1)$ $P(b_2)$ μ_6 μ_2 μ_1 μ_2 μ_3 μ_4 μ_3 μ_5 μ_1 μ_4 μ_4 μ_1 μ_2 μ_6 μ_2 μ_4 μ_2 μ_6 μ_1 μ_4 μ_6 μ_6 μ_5 μ_2 μ_5 μ_1 μ_3 μ_5 μ_6 μ_5 μ_4 μ_3 μ_5 μ_3 μ_1 μ_3

Let B = {b₁, b₂, b₃} and S = {s₁, s₂, s₃}.
A(B, S) = {µ₁, µ₂, µ₃, µ₄, µ₅, µ₆} where µ₁ = {(b₁, s₁), (b₂, s₂), (b₃, s₃)}, µ₂ = {(b₁, s₁), (b₂, s₃), (b₃, s₂)}, µ₃ = {(b₁, s₂), (b₂, s₃), (b₃, s₁)}, µ₄ = {(b₁, s₂), (b₂, s₁), (b₃, s₃)}, µ₅ = {(b₁, s₃), (b₂, s₂), (b₃, s₁)}, µ₆ = {(b₁, s₃), (b₂, s₁), (b₃, s₂)}.
Let P = (P(b₁), P(b₂), P(b₃), P(s₁), P(s₂), P(s₃)).
Suppose $\varphi_{b_1}(s_2) = {µ_3}$.

• Observe that μ_2 , μ_3 , μ_5 and μ_6 are blocked by (b_3, s_3) .

Next μ_1 is blocked by (b_1, s_2) .

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -Non-existence of Core

 $\overline{P}(s_3)$ $\overline{P}(s_1)$ $P(b_3)$ $P(s_2)$ $P(b_1)$ $P(b_2)$ μ_6 μ_2 μ_1 μ_2 μ_3 μ_4 μ_3 μ_5 μ_4 μ_1 μ_4 μ_1 μ_2 μ_6 μ_2 μ_4 μ_2 μ_6 μ_1 μ_4 μ_6 μ_6 μ_5 μ_2 μ_5 μ_1 μ_3 μ_5 μ_6 μ_5 μ_4 μ_3 μ_5 μ_3 μ_1 μ_3

- Let B = {b₁, b₂, b₃} and S = {s₁, s₂, s₃}.
 A(B, S) = {µ₁, µ₂, µ₃, µ₄, µ₅, µ₆} where µ₁ = {(b₁, s₁), (b₂, s₂), (b₃, s₃)}, µ₂ = {(b₁, s₁), (b₂, s₃), (b₃, s₂)}, µ₃ = {(b₁, s₂), (b₂, s₃), (b₃, s₁)}, µ₄ = {(b₁, s₂), (b₂, s₁), (b₃, s₃)}, µ₅ = {(b₁, s₃), (b₂, s₂), (b₃, s₁)}, µ₆ = {(b₁, s₃), (b₂, s₁), (b₃, s₂)}.
 Let P = (P(b₁), P(b₂), P(b₃), P(s₁), P(s₂), P(s₃)).
 Suppose $\varphi_{b_1}(s_2) = {µ_3}$.
- Observe that μ_2, μ_3, μ_5 and μ_6 are blocked by (b_3, s_3) .
- Next μ_1 is blocked by (b_1, s_2) .
 - Lastly, μ_4 is blocked by (b_1, s_1) .

Example - Non-existence of φ -Stability

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

Example -Non-existence of Core

 $\overline{P}(s_3)$ $\overline{P}(s_1)$ $P(b_3)$ $P(s_2)$ $P(b_1)$ $P(b_2)$ μ_6 μ_2 μ_1 μ_2 μ_3 μ_4 μ_3 μ_5 μ_1 μ_4 μ_4 μ_1 μ_2 μ_6 μ_2 μ_4 μ_2 μ_6 μ_1 μ_4 μ_6 μ_6 μ_5 μ_2 μ_5 μ_1 μ_3 μ_5 μ_6 μ_5 μ_4 μ_3 μ_5 μ_3 μ_1 μ_3

Let B = {b₁, b₂, b₃} and S = {s₁, s₂, s₃}.
A(B, S) = {µ₁, µ₂, µ₃, µ₄, µ₅, µ₆} where µ₁ = {(b₁, s₁), (b₂, s₂), (b₃, s₃)}, µ₂ = {(b₁, s₁), (b₂, s₃), (b₃, s₂)}, µ₃ = {(b₁, s₂), (b₂, s₃), (b₃, s₁)}, µ₄ = {(b₁, s₂), (b₂, s₁), (b₃, s₃)}, µ₅ = {(b₁, s₃), (b₂, s₂), (b₃, s₁)}, µ₆ = {(b₁, s₃), (b₂, s₁), (b₃, s₂)}.
Let P = (P(b₁), P(b₂), P(b₃), P(s₁), P(s₂), P(s₃)).
Suppose $\varphi_{b_1}(s_2) = {µ_3}$.

- Observe that μ_2 , μ_3 , μ_5 and μ_6 are blocked by (b_3, s_3) .
- Next μ_1 is blocked by (b_1, s_2) .
- Lastly, μ_4 is blocked by (b_1, s_1) .
 - Hence at P, $S(\mathcal{B}, \mathcal{S}, \mathcal{P}) = \emptyset$.

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE -Non-existence of φ -Stability

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

Example -Non-existence of

Core

- Note that in Theorem 9 the estimation functions are assumed to be exogenously given they don't depend on preferences.
- We propose a minimal condition on the estimation function which we call *No Matched Couple Veto Matching* (NMCVP).
- An estimation function φ satisfies *No Matched Couple Veto Matching* (NMCVP) if the following conditions are satisfied: Let $(i, j), (i', j') \in \mu$ for some $\mu \in A(\mathcal{B}, \mathcal{S})$.
 - If for all $k \in \mathcal{I} \setminus \{i, i', j, j'\}$ and all $\mu^k \in A(i, j) \setminus A(k, \mu(k))$, $\mu P(k)\mu^k$ then $\mu \in \varphi_i(j) \cap \varphi_i(i)$.
- The estimation function in Theorem 9 doesn't satisfy NMCVP (see the example in the previous slide).
- However, NMCVP is not a sufficient condition for the existence of stable matchings.

PARETO OPTIMALITY VS φ -Stability

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality Core and

 φ -STABILITY

EXAMPLE -NON-EXISTENCE OF CORE A matching $\mu \in A(\mathcal{B}, \mathcal{S})$ is *Pareto optimal* at $P \in \mathcal{P}$ if there is no $\mu' \in A(\mathcal{B}, \mathcal{S})$ such that $\mu' P(i)\mu$ for all $i \in \mathcal{B} \cup \mathcal{S}$.

- The set $PO(\mathcal{B}, \mathcal{S}, P)$ denotes the set of all Pareto optimal matchings at $P \in \mathcal{P}$.
- A stable matching is not always Pareto optimal.

Theorem 11. Consider a matching problem $(\mathcal{B}, \mathcal{S}, \mathcal{P})$ with universal estimations φ . For any $\mu \in S_{\varphi}(\mathcal{B}, \mathcal{S}, P)$, if μ is Pareto dominated by another matching μ' at $P \in \mathcal{P}$ then $\mu' \in S_{\varphi}(\mathcal{B}, \mathcal{S}, P)$.

Thus, starting from any stable matching we can reach a stable and Pareto optimal matching within finite steps.

Theorem 12. For any matching problem $(\mathcal{B}, \mathcal{S}, \mathcal{P})$ with universal estimations, then at any $P \in \mathcal{P}, S_{\varphi}(\mathcal{B}, \mathcal{S}, P) \cap PO(\mathcal{B}, \mathcal{S}, P) \neq \emptyset$.

EXAMPLE - PARETO OPTIMALITY

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(Non) Existence of φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

Pareto Optimality vs φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -NON-EXISTENCE OF CORE

Thank You

Then $S(\mathcal{B}, \mathcal{S}, P) = \{\mu_1, \mu_2, \mu_3\}$ but only μ_2 is Pareto optimal at *P* and others are not.

Core and φ -Stability

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

PARETO OPTIMALITY VS φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -Non-existence of Core

- As in the case of matching without externalities, core and φ -stability are not equivalent in the presence of externalities.
- A coalition is a pair (B, S) of non-empty subsets of \mathcal{B} and \mathcal{S} respectively such that |B| = |S|.
- A matching μ is blocked by a coalition (B, S) at $P \in \mathcal{P}$ if there exists $\mu' \in A(B, S)$ such that for any $\mu'' \in A(B^c, S^c)$ with $\mu' \cup \mu'' \neq \mu, \mu' \cup \mu'' P(i)\mu \ \forall i \in B \cup S.$
- The core, $C(\mathcal{B}, \mathcal{S}, P)$, is the set of all matchings that are not blocked at $P \in \mathcal{P}$ by any coalition.
 - Clearly at any $P \in \mathcal{P}$, $C(\mathcal{B}, \mathcal{S}, P) \subseteq S_{\varphi}(\mathcal{B}, \mathcal{S}, P)$.
- In general, we cannot guarantee the non-emptiness of $C(\mathcal{B}, \mathcal{S}, P)$.

EXAMPLE - NON-EXISTENCE OF CORE

OUTLINE

ONE-TO-ONE Two-Sided Matching without Externalities

MANY-TO-ONE Two-Sided Matching without Externalities

ONE-TO-ONE TWO-SIDED MATCHING WITH EXTERNALITIES

ESTIMATION FUNCTIONS

 φ -Stability

(NON) EXISTENCE OF φ -Stability

EXAMPLE - NON-EXISTENCE OF φ -STABILITY

NO MATCHED COUPLE VETO PROPERTY (NMCVP)

PARETO OPTIMALITY VS φ -Stability

Example - Pareto Optimality

CORE AND φ -STABILITY

EXAMPLE -Non-existence of Core

 $\overline{P}(s_3)$ $P(b_3)$ $P(s_1)$ $P(s_2)$ $P(b_1)$ $P(b_2)$ μ_6 μ_2 μ_5 \mathcal{U}_6 μ_1 μ_5 μ_4 μ_5 μ_4 μ_4 μ_6 μ_6 μ_2 μ_6 μ_2 μ_2 μ_4 μ_4 μ_1 μ_4 μ_1 μ_5 μ_2 μ_2 μ_5 μ_1 μ_5 \mathcal{U}_6 μ_1 μ_1 μ_3 μ_3 μ_3 μ_3 μ_3 μ_3

Let B = {b₁, b₂, b₃} and S = {s₁, s₂, s₃}.
A(B, S) = {µ₁, µ₂, µ₃, µ₄, µ₅, µ₆} where µ₁ = {(b₁, s₁), (b₂, s₂), (b₃, s₃)}, µ₂ = {(b₁, s₁), (b₂, s₃), (b₃, s₂)}, µ₃ = {(b₁, s₂), (b₂, s₁), (b₃, s₃)}, µ₄ = {(b₁, s₂), (b₂, s₃), (b₃, s₁)}, µ₅ = {(b₁, s₃), (b₂, s₁), (b₃, s₂)}, µ₆ = {(b₁, s₃), (b₂, s₂), (b₃, s₁)}.
Let P = (P(b₁), P(b₂), P(b₃), P(s₁), P(s₂), P(s₃)).
Observe that at P, µ₃ is blocked by the grand coalition, µ₁ is blocked by {b₂, b₃, s₂, s₃}, µ₂ is blocked by {b₁, b₃, s₁, s₂}, µ₄ is blocked by {b₁, b₂, s₂, s₃}, µ₅ is blocked by {b₁, b₂, s₁, s₃} and µ₆ is blocked by {b₂, b₃, s₁, s₂}.

Hence at $P, C(\mathcal{B}, \mathcal{S}, P) = \emptyset$.

OUTLINE

ONE-TO-ONE TWO-SIDED MATCHING WITHOUT EXTERNALITIES

Many-to-One Two-Sided Matching without Externalities

ONE-TO-ONE Two-Sided Matching with Externalities

Thank You

THANK YOU